您可以从国家标准全文公开系统在线阅读这些标准。
SM9算法是一种基于双线性对的标识密码算法(简称“IBC”),由数字签名算法、标识加密算法、密钥协商协议三部分组成,相比于传统密码体系,SM9密码系统号称的最大的优势就是无需证书、易于使用、易于管理、总体拥有成本低,但这显然过于理想化:
同时,SM9标识密码算法还有以下问题:
上述只是简单的探讨,没有贬低SM9标识密码算法的意思。
SM9标识密码算法用于签名和加密的主公私钥对是分开的,需要各自独立生成:
sm9.GenerateSignMasterKey
用于生成签名主密钥对。sm9.GenerateEncryptMasterKey
用于生成加密主密钥对。其中签名主公钥是G2上的点,加密主公钥是G1上的点,而签名、加密主私钥都是一个随机大整数。
主公私钥的ASN.1数据格式定义请参考《GB/T 41389-2022 信息安全技术 SM9密码算法使用规范》,和椭圆曲线的公私钥ASN.1数据格式类似。本软件实现了相应的Marshal/Unmarshal方法。
用户的签名私钥由签名主私钥、用户标识生成:(master *SignMasterPrivateKey) GenerateUserKey(uid []byte, hid byte) (*SignPrivateKey, error)
,它是G1上的点。
用户的加密私钥由加密主私钥、用户标识生成:func (master *EncryptMasterPrivateKey) GenerateUserKey(uid []byte, hid byte) (*EncryptPrivateKey, error)
,它是G2上的点。
《GB/T 41389-2022 信息安全技术 SM9密码算法使用规范》中 hid 定义如下:
本软件实现没有硬编码hid的值。
用户签名、加密私钥的ASN.1数据格式定义请参考《GB/T 41389-2022 信息安全技术 SM9密码算法使用规范》,和椭圆曲线点的ASN.1数据格式类似。本软件实现了相应的Marshal/Unmarshal方法。
目前smx509
中实现的MarshalPKCS8PrivateKey/ParsePKCS8PrivateKey
没有相关标准,只是为了和gmssl互操作验证,请参考sm9:【feature】是否考虑支持 pem 格式的公私钥输出。
func TestMarshalPKCS8SM9SignPrivateKey(t *testing.T) {
masterKey, err := sm9.GenerateSignMasterKey(rand.Reader)
if err != nil {
t.Fatal(err)
}
privateKey, err := masterKey.GenerateUserKey([]byte("emmansun"), 0x01)
if err != nil {
t.Fatal(err)
}
res, err := MarshalPKCS8PrivateKey(privateKey)
if err != nil {
t.Fatal(err)
}
privateKey1, err := ParsePKCS8PrivateKey(res)
if err != nil {
t.Fatal(err)
}
privateKey2, ok := privateKey1.(*sm9.SignPrivateKey)
if !ok {
t.Fatalf("not expected key")
}
if !privateKey.PrivateKey.Equal(privateKey2.PrivateKey) ||
!privateKey.MasterPublicKey.Equal(privateKey2.MasterPublicKey) {
t.Fatalf("not same key")
}
}
func TestMarshalPKCS8SM9EncPrivateKey(t *testing.T) {
masterKey, err := sm9.GenerateEncryptMasterKey(rand.Reader)
if err != nil {
t.Fatal(err)
}
privateKey, err := masterKey.GenerateUserKey([]byte("emmansun"), 0x01)
if err != nil {
t.Fatal(err)
}
res, err := MarshalPKCS8PrivateKey(privateKey)
if err != nil {
t.Fatal(err)
}
privateKey1, err := ParsePKCS8PrivateKey(res)
if err != nil {
t.Fatal(err)
}
privateKey2, ok := privateKey1.(*sm9.EncryptPrivateKey)
if !ok {
t.Fatalf("not expected key")
}
if !privateKey.PrivateKey.Equal(privateKey2.PrivateKey) ||
!privateKey.MasterPublicKey.Equal(privateKey2.MasterPublicKey) {
t.Fatalf("not same key")
}
}
func TestMarshalPKCS8SM9SignMasterPrivateKey(t *testing.T) {
masterKey, err := sm9.GenerateSignMasterKey(rand.Reader)
if err != nil {
t.Fatal(err)
}
res, err := MarshalPKCS8PrivateKey(masterKey)
if err != nil {
t.Fatal(err)
}
masterKey1, err := ParsePKCS8PrivateKey(res)
if err != nil {
t.Fatal(err)
}
masterKey2, ok := masterKey1.(*sm9.SignMasterPrivateKey)
if !ok {
t.Fatalf("not expected key")
}
masterKey2.MasterPublicKey.Marshal()
if !(masterKey.D.Cmp(masterKey2.D) == 0 && masterKey.MasterPublicKey.Equal(masterKey2.MasterPublicKey)) {
t.Fatalf("not same key")
}
}
func TestMarshalPKCS8SM9EncMasterPrivateKey(t *testing.T) {
masterKey, err := sm9.GenerateEncryptMasterKey(rand.Reader)
if err != nil {
t.Fatal(err)
}
res, err := MarshalPKCS8PrivateKey(masterKey)
if err != nil {
t.Fatal(err)
}
masterKey1, err := ParsePKCS8PrivateKey(res)
if err != nil {
t.Fatal(err)
}
masterKey2, ok := masterKey1.(*sm9.EncryptMasterPrivateKey)
if !ok {
t.Fatalf("not expected key")
}
masterKey2.MasterPublicKey.Marshal()
if !(masterKey.D.Cmp(masterKey2.D) == 0 && masterKey.MasterPublicKey.Equal(masterKey2.MasterPublicKey)) {
t.Fatalf("not same key")
}
}
使用用户签名私钥进行签名,使用签名主公钥和用户标识进行验签:
func ExampleSignPrivateKey_Sign() {
// real user sign private key should be from secret storage.
kb, _ := hex.DecodeString("0130E78459D78545CB54C587E02CF480CE0B66340F319F348A1D5B1F2DC5F4")
var b cryptobyte.Builder
b.AddASN1BigInt(new(big.Int).SetBytes(kb))
kb, _ = b.Bytes()
masterkey := new(sm9.SignMasterPrivateKey)
err := masterkey.UnmarshalASN1(kb)
if err != nil {
fmt.Fprintf(os.Stderr, "Error from UnmarshalASN1: %s\n", err)
return
}
hid := byte(0x01)
uid := []byte("Alice")
userKey, err := masterkey.GenerateUserKey(uid, hid)
if err != nil {
fmt.Fprintf(os.Stderr, "Error from GenerateUserKey: %s\n", err)
return
}
// sm9 sign
hash := []byte("Chinese IBS standard")
sig, err := userKey.Sign(rand.Reader, hash, nil)
if err != nil {
fmt.Fprintf(os.Stderr, "Error from Sign: %s\n", err)
return
}
// Since sign is a randomized function, signature will be
// different each time.
fmt.Printf("%x\n", sig)
}
func ExampleVerifyASN1() {
// get master public key, can be from pem
masterPubKey := new(sm9.SignMasterPublicKey)
keyBytes, _ := hex.DecodeString("03818200049f64080b3084f733e48aff4b41b565011ce0711c5e392cfb0ab1b6791b94c40829dba116152d1f786ce843ed24a3b573414d2177386a92dd8f14d65696ea5e3269850938abea0112b57329f447e3a0cbad3e2fdb1a77f335e89e1408d0ef1c2541e00a53dda532da1a7ce027b7a46f741006e85f5cdff0730e75c05fb4e3216d")
err := masterPubKey.UnmarshalASN1(keyBytes)
if err != nil {
fmt.Fprintf(os.Stderr, "Error from UnmarshalASN1: %s\n", err)
return
}
hid := byte(0x01)
uid := []byte("Alice")
hash := []byte("Chinese IBS standard")
sig, _ := hex.DecodeString("30660420b0d0c0bb1b57ea0d5b51cb5c96be850b8c2eef6b0fff5fcccb524b972574e6eb03420004901819575c9211c7b4e6e137794d23d0095608bcdad5c82dbff05777c5b49c763e4425acea2aaedf9e48d4784b4e4a5621cc3663fe0aae44dcbeac183fee9b0f")
ok := sm9.VerifyASN1(masterPubKey, uid, hid, hash, sig)
fmt.Printf("%v\n", ok)
// Output: true
}
func ExampleSignMasterPublicKey_Verify() {
// get master public key, can be from pem
masterPubKey := new(sm9.SignMasterPublicKey)
keyBytes, _ := hex.DecodeString("03818200049f64080b3084f733e48aff4b41b565011ce0711c5e392cfb0ab1b6791b94c40829dba116152d1f786ce843ed24a3b573414d2177386a92dd8f14d65696ea5e3269850938abea0112b57329f447e3a0cbad3e2fdb1a77f335e89e1408d0ef1c2541e00a53dda532da1a7ce027b7a46f741006e85f5cdff0730e75c05fb4e3216d")
err := masterPubKey.UnmarshalASN1(keyBytes)
if err != nil {
fmt.Fprintf(os.Stderr, "Error from UnmarshalASN1: %s\n", err)
return
}
hid := byte(0x01)
uid := []byte("Alice")
hash := []byte("Chinese IBS standard")
sig, _ := hex.DecodeString("30660420b0d0c0bb1b57ea0d5b51cb5c96be850b8c2eef6b0fff5fcccb524b972574e6eb03420004901819575c9211c7b4e6e137794d23d0095608bcdad5c82dbff05777c5b49c763e4425acea2aaedf9e48d4784b4e4a5621cc3663fe0aae44dcbeac183fee9b0f")
ok := masterPubKey.Verify(uid, hid, hash, sig)
fmt.Printf("%v\n", ok)
// Output: true
}
签名结果ASN.1格式请参考参考《GB/T 41389-2022 信息安全技术 SM9密码算法使用规范》。
使用加密主公钥和目标用户标识进行密钥封装,使用用户加密私钥和用户标识进行解封:
func ExampleEncryptMasterPublicKey_WrapKey() {
// get master public key, can be from pem
masterPubKey := new(sm9.EncryptMasterPublicKey)
keyBytes, _ := hex.DecodeString("03420004787ed7b8a51f3ab84e0a66003f32da5c720b17eca7137d39abc66e3c80a892ff769de61791e5adc4b9ff85a31354900b202871279a8c49dc3f220f644c57a7b1")
err := masterPubKey.UnmarshalASN1(keyBytes)
if err != nil {
fmt.Fprintf(os.Stderr, "Error from UnmarshalASN1: %s\n", err)
return
}
hid := byte(0x03)
uid := []byte("Bob")
key, cipherDer, err := masterPubKey.WrapKey(rand.Reader, uid, hid, 32)
if err != nil {
fmt.Fprintf(os.Stderr, "Error from WrapKeyASN1: %s\n", err)
return
}
// Since WrapKey is a randomized function, result will be
// different each time.
fmt.Printf("%s %s\n", hex.EncodeToString(key), hex.EncodeToString(cipherDer))
}
func ExampleEncryptPrivateKey_UnwrapKey() {
// real user encrypt private key should be from secret storage, e.g. password protected pkcs8 file
kb, _ := hex.DecodeString("038182000494736acd2c8c8796cc4785e938301a139a059d3537b6414140b2d31eecf41683115bae85f5d8bc6c3dbd9e5342979acccf3c2f4f28420b1cb4f8c0b59a19b1587aa5e47570da7600cd760a0cf7beaf71c447f3844753fe74fa7ba92ca7d3b55f27538a62e7f7bfb51dce08704796d94c9d56734f119ea44732b50e31cdeb75c1")
userKey := new(sm9.EncryptPrivateKey)
err := userKey.UnmarshalASN1(kb)
if err != nil {
fmt.Fprintf(os.Stderr, "Error from UnmarshalASN1: %s\n", err)
return
}
cipherDer, _ := hex.DecodeString("0342000447689629d1fa57e8def447f42b75e28518a1b692891528ca596f7bcbf581c7cf429ed01b114ce157ed4eadd0b2ded9a7e475e347f67b6affa3a6cf654573f978")
key, err := userKey.UnwrapKey([]byte("Bob"), cipherDer, 32)
if err != nil {
fmt.Fprintf(os.Stderr, "Error from UnwrapKey: %s\n", err)
return
}
fmt.Printf("%s\n", hex.EncodeToString(key))
// Output: 270c42505bca90a8084064ea8af279364405a8195f30664082ead3d6991ed70f
}
密钥封装结果ASN.1格式请参考参考《GB/T 41389-2022 信息安全技术 SM9密码算法使用规范》。
使用加密主公钥和目标用户标识进行加密,使用用户加密私钥和用户标识进行解密:
func ExampleEncryptMasterPublicKey_Encrypt() {
// get master public key, can be from pem
masterPubKey := new(sm9.EncryptMasterPublicKey)
keyBytes, _ := hex.DecodeString("03420004787ed7b8a51f3ab84e0a66003f32da5c720b17eca7137d39abc66e3c80a892ff769de61791e5adc4b9ff85a31354900b202871279a8c49dc3f220f644c57a7b1")
err := masterPubKey.UnmarshalASN1(keyBytes)
if err != nil {
fmt.Fprintf(os.Stderr, "Error from UnmarshalASN1: %s\n", err)
return
}
hid := byte(0x03)
uid := []byte("Bob")
ciphertext, err := masterPubKey.Encrypt(rand.Reader, uid, hid, []byte("Chinese IBE standard"), sm9.DefaultEncrypterOpts)
if err != nil {
fmt.Fprintf(os.Stderr, "Error from Encrypt: %s\n", err)
return
}
// Since Encrypt is a randomized function, result will be
// different each time.
fmt.Printf("%s\n", hex.EncodeToString(ciphertext))
}
func ExampleEncryptPrivateKey_Decrypt() {
// real user encrypt private key should be from secret storage.
kb, _ := hex.DecodeString("038182000494736acd2c8c8796cc4785e938301a139a059d3537b6414140b2d31eecf41683115bae85f5d8bc6c3dbd9e5342979acccf3c2f4f28420b1cb4f8c0b59a19b1587aa5e47570da7600cd760a0cf7beaf71c447f3844753fe74fa7ba92ca7d3b55f27538a62e7f7bfb51dce08704796d94c9d56734f119ea44732b50e31cdeb75c1")
userKey := new(sm9.EncryptPrivateKey)
err := userKey.UnmarshalASN1(kb)
if err != nil {
fmt.Fprintf(os.Stderr, "Error from UnmarshalASN1: %s\n", err)
return
}
uid := []byte("Bob")
cipherDer, _ := hex.DecodeString("307f020100034200042cb3e90b0977211597652f26ee4abbe275ccb18dd7f431876ab5d40cc2fc563d9417791c75bc8909336a4e6562450836cc863f51002e31ecf0c4aae8d98641070420638ca5bfb35d25cff7cbd684f3ed75f2d919da86a921a2e3e2e2f4cbcf583f240414b7e776811774722a8720752fb1355ce45dc3d0df")
plaintext, err := userKey.DecryptASN1(uid, cipherDer)
if err != nil {
fmt.Fprintf(os.Stderr, "Error from Decrypt: %s\n", err)
return
}
fmt.Printf("%s\n", plaintext)
// Output: Chinese IBE standard
}
密文封装结果ASN.1格式请参考参考《GB/T 41389-2022 信息安全技术 SM9密码算法使用规范》。
SM9公钥加密算法支持多种对称加密算法,不像SM2公钥加密算法,只支持XOR。不过由于非XOR对称加密算法有几个需要IV,而规范没有定义,所以会有互操作问题,
在这里不详细介绍使用方法,一般只有tls/tlcp才会用到,普通应用通常不会涉及这一块,请参考API Document。